What was it like to be there? – clues in sediment which bring an environment to life Bringing a depositional environment to life using evidence from sedimentary structures

Ask pupils to imagine themselves to be there at the time when the sediments at the sedimentary exposure (or in the photographs) were forming, and to think what the conditions would have been like at the time.

Sedimentary structure	Photo	Land or water? If water, how deep?	Moving water or wind? If so, how fast?	What might you see, hear, taste, smell, sense?
Bedding		Nearly all beds of sediment are formed in water, of lake or river depth, down to deep sea depth	Flow of 0.01 to 1 metre per second (ms ⁻¹) to bring sediment into the area, slowing down to deposit it (see Hjulström- Sundborg diagram below)	The muddy/sandy water has poor visibility; normal underwater sounds; fresh or salt water; no smell; difficult to stand on the new sediment layer
Small-scale cross bedding		Formed in underwater dunes by currents in rivers and the sea	The underwater dunes that form cross bedding develop at water speeds of 0.4 to 1 ms ⁻¹	The flowing water contains sand with poor visibility; rushing sound of flowing water; fresh or salt water; no smell; difficult to stand up in these flows
Large-scale cross bedding		Formed in wind- formed sand dunes on land in deserts and coastal areas (less commonly in rivers and the sea)	Wind speeds of at least 3 ms ⁻¹ are required to move sand and form sand dunes, producing large- scale cross bedding	You could see across the desert or coastal dunes, and hear the wind blow, the sand might be gritty between your teeth with desert or coastal smells; difficult to walk in loose sand
Asymmetrical ripple marks		These can form wherever water flows at the right speed, in rivers, shallow and deep seas. They are also formed as wind blows over loose sand	Form at water speeds of 0.2 to 0.6 ms ⁻¹ and wind speeds of more than 3 ms ⁻¹	The water might be fairly clear or muddy with poorer visibility; normal underwater sounds; fresh or salt water; no smell; easy to stand in flows of this speed
Symmetrical ripple marks		Formed by waves in lakes or the sea, where the water is less than 200m deep	Produced by the gentle to and fro movement of water as waves pass overhead	Clear or cloudy water; normal underwater sounds; fresh or salt water; no smell; easy to stand in flows of this speed
Graded bedding		Graded bedding forms underwater, most commonly from turbidity currents that flow across the deep ocean floor	Turbidity currents flow at up to 30 ms ⁻¹ down continental slopes and across the ocean floor, slowing down as they flow	No visibility in this turbulent cloudy flow, which is much too fast to survive, let alone use your other senses

Imbricated		Shallow fast-	Pebbles are	Fast shallow flows
pebble		flowing water	deposited at flows	are likely to be
bedding	and the second second	currents carry	between 0.1 and 1	turbulent and
	to offer the	pebbles and can	ms⁻¹) (see	cloudy and noisy.
		deposit them in	Hjulström-	They are most
		overlapping layers,	Sundborg diagram	common in
	and the second second	dipping upstream;	below), but faster	freshwater floods
		waves can	flows are needed	that would be
		imbricate beach	to carry the	impossible to
		gravel too	pebbles	stand up in
Mudcracks		These are formed	Water would have	Views of dried out
(desiccation		by a drying land	brought mud into	pools, lake beds or
cracks)		surface where mud	the area, but has	tidal flats with their
,		has been	now flowed away	characteristic
		deposited	or dried up	sounds and
		•	•	smells; easy to
				stand on the
	CM CM			cracked surface
Footprints		Animals leave	Water would have	Views of dried out
		prints in muddy	brought mud into	pools, lake beds or
		sediment on land	the area, but has	tidal flats with their
		before it dries out	now flowed away	typical sounds and
	Stor Paul Star	as casts of the	or dried up	smells; easy to
		base of the foot		stand on the
				surface which is
				now hard
Trails and		Animals leave	Formed and	Water above the
burrows		these in muddy	usually preserved	muddy floor can be
	The second second	sediment on the	underwater, but	clear or cloudy,
		beds of pools,	unusually can be	fresh or salt with
		lakes, tidal flats	retained on dried	normal underwater
		and quiet sea	out mud surfaces	sounds; difficult to
		floors.		stand on this
	and the second second			muddy layer

All photos by Peter Kennett, apart from the large scale cross bedding (File is licenced by Roy Luck (roy.luck on Flickr) http://www.flickr.com/people/royluck/ under the Creative Commons Attribution 2.0 Generic licence) and the dinosaur footprints (with permission from Dr. Oliver Wings, http://dinosaurhunter.org).

Then, for each environment, ask, 'If you were there, how would you be feeling? – scared? – happy – amazed?'

The back up

Title: What was it like to be there? – clues in sediment which bring an environment to life

Subtitle: Bringing a depositional environment to life using evidence from sedimentary structures

Topic: Asking 'deep questions' about sedimentary structures to help pupils to visualise the environment in which they formed.

Age range of pupils: 9-90 years Context:

You can read the flow speed at which different sizes of sediment are deposited from the Hjulström-Sundborg diagram on page 3.

Time needed to complete activity: depends on the numbers and types of structures

Pupil learning outcomes: Pupils can:

- describe how different sedimentary structures formed;
- explain how the evidence from them can be used to help reconstruct past environments;
- describe likely past environments using all their senses.

Following up the activity:

Try using the 'Questions for any rock face' Earthlearningideas or the 'What was it like to be there? – in the rocky world' or the 'What was it like to be there? – bringing a fossil to life' Earthlearningideas.

Hjulström-Sundborg diagram

Note: 10 ms⁻¹ is 22 miles per hour or 36 kilometres per hour, so 1 ms⁻¹ is 2.2 mph and 3.6 kph, etc.

Underlying principles:

- Sedimentary structures preserve evidence of the processes that formed them, often with clues about the rates and directions of flows.
- They therefore provide valuable evidence for the reconstruction of ancient sedimentary environments.

Thinking skill development:

Creative and imaginative skills are needed to translate the evidence from sedimentary structures into mental pictures of the depositional environments in which they formed.

Resource list:

• the resources needed for pupil fieldwork listed in the '*Planning for fieldwork: preparing your*

pupils before setting out to "ask questions for any rock face"

Useful links:

A graph of the flow speeds at which asymmetrical ripples and subaqueous dunes form can be found at:

http://opencourseware.kfupm.edu.sa/colleges/cs/e s/geol307/files%5C5-_Handouts_Lec_7.pdf

Source: Chris King of the Earthlearningidea Team.

© Earthlearningidea team. The Earthlearningidea team seeks to produce a teaching idea regularly, at minimal cost, with minimal resources, for teacher educators and teachers of Earth science through school-level geography or science, with an online discussion around every idea in order to develop a global support network. 'Earthlearningidea' has little funding and is produced largely by voluntary effort. Copyright is waived for original material contained in this activity if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team. Every effort has been made to locate and contact copyright holders of materials included in this activity in order to obtain their permission. Please contact us if, however, you believe your copyright is being infringed: we welcome any information that will help us to update our records.

If you have any difficulty with the readability of these documents, please contact the Earthlearningidea team for further help. Contact the Earthlearningidea team at: info@ earthlearningidea.com

