Earthlearningidea - http://www.earthlearningidea.com/

Which power source? – solving the crisis in Kiama Searching for all the power sources that could be developed in a mythical country

Kiama has a power crisis. It used to get all its power from oil supplied by Turaba, the country next door. But there has been a border dispute in the Barotsi Hills region – and Turaba has cut off all oil supplies.

Ask your pupils to study the map for clues to all the different power sources Kiama might develop instead. Ask them to work in groups to:

- write a list of all the power sources that could be developed;
- put the list of power sources into a table and list the advantages and disadvantages of each (for example some may be renewable, some may be cheaper or easier to develop than others, etc.);
- decide on the four best options and prepare a presentation on why these choices have been made.

When they have finished, show them the diagram below of Kiama with many of its potential power sources developed, to see which ones they had missed – or whether they had spotted any other possibilities (a larger version of this diagram is given on the final page of this Earthlearningidea).

A block diagram of the mythical country of Kiama showing power sources that could be developed there.

Ask which energy sources are best for:

- fuelling cars and trucks;
- providing power whatever the weather;
- giving the least pollution;
- giving long-term secure power supplies;

• causing the least environmental problems. Ask which is the worst for being in 'your back yard' (people who don't want industrial developments near them are often described as NIMBYs – Not In My Back-Yard);

The back up

Title: Which power source? – solving the crisis in Kiama.

Subtitle: Searching for all the power sources that could be developed in a mythical country.

Topic: Pupils study a map to find clues to the different energy sources that could be exploited in a country.

Age range of pupils: 10 - 16 years

Time needed to complete activity: 30 minutes

Pupil learning outcomes: Pupils can:

- list a range of potential power resources for a country;
- debate the advantages and disadvantages of each of the power sources;
- decide on the best options and explain their decisions;

Context:

Pupils use a map to identify and debate a range of possible energy sources for a mythical country. Pupils of lower ability who may find it difficult to use a map, could base this discussion on a large copy of the block diagram of the country with the possible power sources shown – given below. Possible power sources with some of their advantages and disadvantages are shown in the table below. "Fracking" techniques are becoming widespread, where methane gas is released from shales at depth, by forcing water down drill holes to fracture the rock.

Following up the activity:

Pupils could be allocated different power sources to research on the internet before sharing their findings with the rest of the class.

Potential power	Renewable or	Problems or benefits	Successful large scale use today?
sources	non-renewable?	with usage	
Oil	Fossil fuel so	Burning pollutes	Most widely used energy source today
	non-renewable	atmosphere	(almost 40% of primary energy supplies)
Gas	Fossil fuel so	Burning pollutes	Widely used
	non-renewable	atmosphere	
Coal	Fossil fuel so	Burning pollutes	Of lessening importance in Europe but
	non-renewable	atmosphere	growing rapidly in China and India
Oil shale	Fossil fuel so	Burning pollutes	Exploited in only a few areas, where other
	non-renewable	atmosphere	fuel sources are not available – technology
			being developed
Fracking of shale	Fossil fuel so	Burning pollutes	Widely used in the United States;
	non-renewable	atmosphere	prospecting taking place in Europe
Tar sands	Fossil fuel so	Burning pollutes	Big resources in Venezuela and Canada.
	non-renewable	atmosphere.	Beginning to be exploited, technology
		Widespread	being developed
		devastation of	
		environment	
Uranium (nuclear)	Non-renewable but	Radioactivity pollution	Fairly large scale usage and increasing
	reprocessing and use of	problems and risk of	
-	breeder reactors helps	major pollution disaster	
Geothermal	Non-renewable except in	Non-polluting	Some small scale projects are in operation
	active volcanic areas,		in active volcanic areas such as Italy,
	since energy is extracted		Iceland and New Zealand. Even smaller
	at a much faster rate than		projects are working in other areas such as
	It can be replaced		the UK and France
Ground-source	Depends on solar heating	Needs an aquifer.	Of growing importance in many countries.
neat pumps	of uppermost 100m or so	te drive everence	very emcient
	or ground, therefore	to drive pumps	
Watar (budra)	Penewable	Non polluting but large	Widely used in water rich countries (or
water (nyuro)	Reliewable	non-politing but large	Now Zealand, Norway and Britain) but not
		areated	available in dry or flat areas
Wayee	Penewahle	Non-polluting	At experimental stage only
Wind	Penewable	Non-polluting but wind	Increasing usage both onshore and
wind	Reliewable	farms look unsightly	offshore
		Only works when the	Glianore
		wind blows	
Tides	Renewable	Non-polluting but tidal	Some fairly large schemes working on
TIGO	I CHOWADIG	harrages affect	suitable estuaries today (eq in France)
		estuarine environmente	
		and shinning	
Solar	Renewable	Non-polluting but large	For large scale production, at experimental
	T CHOWADIO	areas of solar panels	stage only
		look unsightly	
		is sit anoighty	

Potential power sources	Renewable or non-renewable?	Problems or benefits with usage	Successful large scale use today?
Burning natural	Non-renewable at the	Burning pollutes	Still wide scale usage for domestic
wood	rate wood is used	atmosphere	purposes in developing countries (eg in Africa)
Burning dung or	Renewable but major	Burning pollutes	Wide scale usage for domestic purposes in
other agricultural residues	loss of nutrients to soil	atmosphere	developing countries (eg in India)
Biogas, from	Renewable	Manure not available	Widely used in China and on some British
anaerobic digestion		for spreading on land	farms
of organic matter in			
methane			
Biomass, energy	Renewable	Land not available for	Sugar is grown and fermented to produce
produced from fast-		growing food crops	alcohol in some countries. In other areas,
growing crops			fast-growing timber is grown and burnt
Burning rubbish	Renewable	Burning pollutes	In Nottingham, domestic rubbish is burned
		atmosphere	to produce hot water
Refuse dumps	Renewable	Smell: possible	Methane is locally recovered from dumps
		pollution of	of domestic waste and used as fuel
		groundwater	

Earthlearningidea - http://www.earthlearningidea.com/

Underlying principles:

- There is a wide range of different power sources, each with its own characteristics and advantages and disadvantages, as outlined in the table.
- The choice of the most appropriate power source for a purpose or a region depends on a number of factors.
- The term 'energy source' is widely used, but 'power source' is preferred by physicists, because of the more specific use of the term 'energy' in physics.

Thinking skill development:

Pupils use map skills in interpreting the map and could encounter construction, cognitive conflict and metacognition during discussions around the different power source possibilities.

Resource list:

 sheet with the map (and or block diagram) and the questions

Useful links:

More about different sources of power can be found on the internet by typing 'energy resources' into a search engine. A nice animation can be found at: <u>http://www.oresomeresources.com/</u> whilst activities linked to coal can be found in the Earth Science Teachers' Association publication 'Power from the past' at:

http://www.nationalstemcentre.org.uk/elibrary/reso urce/1149/power-from-the-past-coal

Source: This activity was first published as part of the *Crisis in Kiama: which energy source now?* activity, in the Science of the Earth 11 – 14 booklet, *Power source: oil and energy* published by the Earth Science Teachers' Association in 1992. Geo Supplies Ltd, Sheffield, and was further developed by the Earth Science Education Unit (ESEU). The two diagrams were kindly provided by ESEU

(www.earthscienceeducation.com)

♥ Earthlearningidea team. The Earthlearningidea team seeks to produce a teaching idea regularly, at minimal cost, with minimal resources, for teacher educators and teachers of Earth science through school-level geography or science, with an online discussion around every idea in order to develop a global support network. 'Earthlearningidea' has little funding and is produced largely by voluntary effort.

Copyright is waived for original material contained in this activity if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team.

Every effort has been made to locate and contact copyright holders of materials included in this activity in order to obtain their permission. Please contact us if, however, you believe your copyright is being infringed: we welcome any information that will help us to update our records.

If you have any difficulty with the readability of these documents, please contact the Earthlearningidea team for further help. Contact the Earthlearningidea team at: <u>info@earthlearningidea.com</u>

Earthlearningidea - http://www.earthlearningidea.com/

A block diagram of the mythical country of Kiama showing power sources that could be developed there.